ZHENHENG YANG, JIYANG GAO, RAM NEVATIA: SPATIO-TEMPORAL ACTION DETECTION WITH CASCADE PROPOSAL AND LOCATION ANTICIPATION1 Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

نویسندگان

  • Zhenheng Yang
  • Jiyang Gao
  • Ram Nevatia
چکیده

In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There are several salient points of our model: (1) a cascade region proposal network (casRPN) is adopted for action proposal generation and shows better localization accuracy compared with single region proposal network (RPN); (2) action spatio-temporal consistencies are exploited via a location anticipation network (LAN) and thus frame-level action detection is not conducted independently. Frame-level detections are then linked by solving an linking score maximization problem, and temporally trimmed into spatio-temporal action tubes. We demonstrate the effectiveness of our model on the challenging UCF101 and LIRIS-HARL datasets, both achieving state-of-the-art performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There...

متن کامل

Mining Significant Semantic Locations From GPS Data

With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable of extracting semantic locations from GPS data. We capture the relationships between locations and be...

متن کامل

An Efficient Location Encoding Method Based on Hierarchical Administrative District

Due to the rapid development in mobile communication technologies, the usage of mobile devices such as cell phone or PDA becomes increasingly popular. As different devices require different applications, various new services are being developed to satisfy the needs. One of the popular services under heavy demand is the Location-based Service (LBS) that exploits the spatial information of moving...

متن کامل

An efficient location encoding method for moving objects using hierarchical administrative district and road network

Due to the rapid development in mobile communication technologies, the usage of mobile devices such as cell phone or PDA has increased significantly. As different devices require different applications, various new services are being developed to satisfy the needs. One of the popular services under heavy demand is the location-based service (LBS) that exploits the spatial information of moving ...

متن کامل

New Methods for Mining Sequential and Time Series Data

Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017